Abstract
Oscillating tableaux are certain walks in Young's lattice of partitions; they generalize standard Young tableaux. The shape of an oscillating tableau is the last partition it visits and the length of an oscillating tableau is the number of steps it takes. We define a new statistic for oscillating tableaux that we call weight: the weight of an oscillating tableau is the sum of the sizes of all the partitions that it visits. We show that the average weight of all oscillating tableaux of shape $\lambda$ and length $|\lambda|+2n$ (where $|\lambda|$ denotes the size of $\lambda$ and $n \in \mathbb{N}$) has a surprisingly simple formula: it is a quadratic polynomial in $|\lambda|$ and $n$. Our proof via the theory of differential posets is largely computational. We suggest how the homomesy paradigm of Propp and Roby may lead to a more conceptual proof of this result and reveal a hidden symmetry in the set of perfect matchings.
Highlights
In this note, we follow the standard notation for partitions as laid out in [14, §7.2]
We define a new statistic for oscillating tableaux that we call weight: the weight of an oscillating tableau is the sum of the sizes of all the partitions that it visits
We show that the average weight of all oscillating tableaux of shape λ and length |λ| + 2n has a surprisingly simple formula: it is a quadratic polynomial in |λ| and n
Summary
We follow the standard notation for partitions as laid out in [14, §7.2]. We show that the average weight of all oscillating tableaux of shape λ and length |λ| + 2n (where |λ| denotes the size of λ and n ∈ N) has a surprisingly simple formula: it is a quadratic polynomial in |λ| and n. We use OT (λ, l) to denote the set of oscillating tableaux of shape λ and length l.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.