Abstract
In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortunately, the main result of stability derived by the condition is somewhat restrictive to be applied for practical application. This paper improves the corresponding results. The authors not only prove the mean-square stability of the numerical method but also prove the general mean-square stability of the numerical method. Furthermore, an example is given to illustrate the theory.
Paper version not known
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.