Abstract

By using a density technique, sufficient conditions for lower semicontinuity of strong solutions to a parametric generalized vector equilibrium problem are established, where the monotonicity is not necessary. The obtained results are different from the corresponding ones in the literature (Gong and Yao in J. Optim. Theory Appl. 138:197-205, 2008; Gong in J. Optim. Theory Appl. 139:35-46, 2008; Chen and Li in Pac. J. Optim. 6:141-151, 2010; Li and Fang in J. Optim. Theory Appl. 147:507-515, 2010; Gong and Yao in J. Optim. Theory Appl. 138:189-196, 2008). Some examples are given to illustrate the results.MSC:49K40, 90C29, 90C31.

Highlights

  • 1 Introduction It is well known that the vector equilibrium problem (VEP, in short) is a very general mathematical model, which embraces the formats of several disciplines, as those for Nash equilibria, those from Game Theory, those from (Vector) Optimization and (Vector) Variational Inequalities, and so on

  • We observe that the semicontinuity of solution maps for the PVEP has been discussed under the assumption of C-strict monotonicity, which implies that the f -solution set of the PVEP is a singleton for a linear continuous functional f

  • In this paper, by using a density skill, we aim at studying the lower semicontinuity of the strong solution map for a class of parametric generalized vector equilibrium problems (PGVEPs), when the f -solution set is a general set by removing the assumption of C-strict monotonicity

Read more

Summary

Introduction

It is well known that the vector equilibrium problem (VEP, in short) is a very general mathematical model, which embraces the formats of several disciplines, as those for Nash equilibria, those from Game Theory, those from (Vector) Optimization and (Vector) Variational Inequalities, and so on (see [ – ]).The stability analysis of solution maps for parametric vector equilibrium problems (PVEP, in short) is an important topic in optimization theory and applications. There are some papers discussing the upper and/or lower semicontinuity of solution maps. Cheng and Zhu [ ] obtained a result on the lower semicontinuity of the solution set map to a PVEP in finite-dimensional spaces by using a scalarization method.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.