Abstract
The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in Rn with respect to the weight Wλ(x). It fulfilles mainly by means of the projection-slice theorem. The range of the Radon transform is spanned by products of Gegenbauer polynomials and spherical harmonics. The inverse transform of the those basis functions are given. This immediately leads to an inversion formula by series expansion and range characterizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.