Abstract
We revisit a novel causal model published in Demography by Hicks et al. (2018), designed to assess whether exposure to neighborhood disadvantage over time affects children's reading and math skills. Here, we provide corrected and new results. Reconsideration of the model in the original article raised concerns about bias due to exposure-induced confounding (i.e., past exposures directly affecting future exposures) and true state dependence (i.e., past exposures affecting confounders of future exposures). Through simulation, we show that our originally proposed propensity function approach displays modest bias due to exposure-induced confounding but no bias from true state dependence. We suggest a correction based on residualized values and show that this new approach corrects for the observed bias. We contrast this revised method with other causal modeling approaches using simulation. Finally, we reproduce the substantive models from Hicks et al. (2018) using the new residuals-based adjustment procedure. With the correction, our findings are essentially identical to those reported originally. We end with some conclusions regarding approaches to causal modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.