Abstract

Weighted sums defined on a Markov chain (MC) are important in applications (e.g. to reservoir storage theory). The rather intractable theory of such sums simplifies to some extent when the transition p.d.f. of the chain {Xt} has a Laplace transform (LT) L(Xt+1; θ |Χ t=x) of the ‘exponential' form H(θ) exp{ – G(θ)x}. An algorithm is derived for the computation of the LT of Σat,Χ t for this class, and for a seasonal generalization of it.A special case of this desirable exponential type of transition LT for a continuous-state discrete-time MC is identified by comparison with the LT of the Bessel distribution. This is made the basis for a new derivation of a gamma-distributed MC proposed by Lampard (1968).A seasonal version of this process is developed, valid for any number of seasons.Reference is made to related chains with three-parameter gamma-like distributions (of the Kritskii–Menkel family) that may be generated from the above by a simple power transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.