Abstract
AbstractIn this paper we investigate Hankel operators with anti‐holomorphic L2‐symbols on generalized Fock spaces Am2 in one complex dimension. The investigation of the mentioned operators was started in [4] and [3]. Here, we show that a Hankel operator with anti‐holomorphic L2‐symbol is in the Schatten‐class Sp if and only if the symbol is a polynomial with degree N satisfying 2N < m and p > . The result has been proved independently before in the recent work [2], which also considers the case of several complex variables. However, in addition to providing a different proof for the result the present work shows that the methodology developed in [4] and [3] can be adopted in order to work to characterize Schatten‐class membership. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.