Abstract
In this note a robust pole assignment algorithm is proposed for linear periodic discrete-time systems with time-varying dimensions of the state and/or input spaces. The algorithm deduces a periodic state feedback law by the minimization of the condition numbers of the eigenvector matrices of the closed-loop system. Numerical examples are provided to show the performances of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.