Abstract

It is shown that the equations of the general three-body problem take on a very symmetric form when one considers only their relative positions, rather than position vectors relative to some given coordinate system. From these equations one quickly surmises some well known classical properties of the three-body problem such as the first integrals and the equilateral triangle solutions. Some new Lagrangians with relative coordinates are also obtained. Numerical integration of the new equations of motion is about 10 percent faster than with barycentric or heliocentric coordinates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.