Abstract
The problem of a random Hermitian perturbation of a multiple isolated eigenvalue of a Hermitian operator is considered. It is shown that the combined multiplicities of the perturbed eigenvalues converge in probability to the multiplicity of the eigenvalue of the target operator. Also the asymptotic distribution of a certain average of these eigenvalues, centered at the target, is obtained. As a tool differentiation of analytic functions of operators is employed in conjunction with an ensuing “delta-method”. The result is of a probabilistic rather than statistical nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.