Abstract
In this note we analyze the simultaneous preservation of the consistency (and of the inconsistency) of linear programming problems posed in infinite dimensional Banach spaces, and their corresponding dual problems, under sufficiently small perturbations of the data. We consider seven different scenarios associated with the different possibilities of perturbations of the data (the objective functional, the constraint functionals, and the right hand-side function), i.e., which of them are known, and remain fixed, and which ones can be perturbed because of their uncertainty. The obtained results allow us to give sufficient and necessary conditions for the coincidence of the optimal values of both problems and for the stability of the duality gap under the same type of perturbations. There appear substantial differences with the finite dimensional case due to the distinct topological properties of cones in finite and infinite dimensional Banach spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.