Abstract

<abstract><p>A 3-connected graph is a <italic>brick</italic> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching covered graphs. Lovász (Combinatorica, 3 (1983), 105-117) showed that every brick is $ K_4 $-based or $ \overline{C}_6 $-based. A brick is <italic>$ K_4 $-free</italic> (respectively, <italic>$ \overline{C}_6 $-free</italic>) if it is not $ K_4 $-based (respectively, $ \overline{C}_6 $-based). Recently, Carvalho, Lucchesi and Murty (SIAM Journal on Discrete Mathematics, 34(3) (2020), 1769-1790) characterised the PM-compact $ \overline{C}_6 $-free bricks. In this note, we show that, by using the brick generation procedure established by Norine and Thomas (J Combin Theory Ser B, 97 (2007), 769-817), the only PM-compact $ K_4 $-free brick is $ \overline{C}_6 $, up to multiple edges.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call