Abstract

We consider a parameter estimation problem for one-dimensional stochastic heat equations, when data is sampled discretely in time or spatial component. We prove that, the real valued parameter next to the Laplacian (the drift), and the constant parameter in front of the noise (the volatility) can be consistently estimated under somewhat surprisingly minimal information. Namely, it is enough to observe the solution at a fixed time and on a discrete spatial grid, or at a fixed space point and at discrete time instances of a finite interval, assuming that the mesh-size goes to zero. The proposed estimators have the same form and asymptotic properties regardless of the nature of the domain –bounded domain or whole space. The derivation of the estimators and the proofs of their asymptotic properties are based on computations of power variations of some relevant stochastic processes. We use elements of Malliavin calculus to establish the asymptotic normality properties in the case of bounded domain. We also discuss the joint estimation problem of the drift and volatility coefficient. We conclude with some numerical experiments that illustrate the obtained theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.