Abstract
Random parameters logit models have become an increasingly popular method to investigate crash-injury severities in recent years. However, there remain potential elements of the approach that need clarification including out-of-sample prediction, the calculation of marginal effects, and temporal instability testing. In this study, four models are considered for comparison: a fixed parameters multinomial logit model; a random parameters logit model; a random parameters logit model with heterogeneity in means; and a random parameters logit model with heterogeneity in means and variances. A full simulation of random parameters is undertaken for out-of-sample injury-severity predictions, and the prediction accuracy of the estimated models was assessed. Results indicate, not surprisingly, that the random parameters logit model with heterogeneity in the means and variances outperformed other models in predictive performance. Following this, two alternative methods for computing marginal effects are considered: one using Monte Carlo simulation and the other using individual estimates of random parameters. The empirical results indicate that both methods produced defensible results since the full distributions of random parameters are considered. Finally, two testing alternatives for temporal instability are evaluated: a global test across all time periods being considered, and a pairwise time-period to time-period comparison. It is shown that the pairwise comparison can provide more detailed insights into possible temporal variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.