Abstract

In this paper, we study the order of convergence of the Euler–Maruyama (EM) method for neutral stochastic functional differential equations (NSFDEs). Under the global Lipschitz condition, we show that the pth moment convergence of the EM numerical solutions for NSFDEs has order p/2 − 1/ l for any p ⩾ 2 and any integer l > 1. Moreover, we show the rate of the mean-square convergence of EM method under the local Lipschitz condition is 1 − ε/2 for any ε ∈ (0, 1), provided the local Lipschitz constants of the coefficients, valid on balls of radius j, are supposed not to grow faster than log j. This is significantly different from the case of stochastic differential equations where the order is 1/2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call