Abstract
Recently, Godfrey and Andrews [1982], hereafter GA, compared sample size requirements in auditing using finite versus infinite Bayesian population models. They concluded that required sample sizes for finite population models would never be larger than those required for an infinite population, and that both Bayesian models require smaller sample sizes than classical procedures. However, neither GA nor prior researchers who have utilized informal Bayesian techniques (e.g., Felix and Grimlund [1977]) included possible loss functions in their analyses. Obviously, some loss function, whether stated explicitly or relied upon implicitly, must enter auditors' sample size determinations. In this paper we examine optimal sample sizes using a formal Bayesian decision-theoretic approach, in which auditors seek to maximize expected utility subject to a budgetary constraint. The results are presented for finite and infinite population models based on a linear loss function and the prior distribution mean error rates for audit populations taken from
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.