Abstract
Recently Oishi published a paper allowing lower bounds for the minimum singular value of coefficient matrices of linearized Galerkin equations, which in turn arise in the computation of periodic solutions of nonlinear delay differential equations with some smooth nonlinearity. The coefficient matrix of linearized Galerkin equations may be large, so the computation of a valid lower bound of the smallest singular value may be costly. Oishi’s method is based on the inverse of a small upper left principal submatrix, and subsequent computations use a Schur complement with small computational cost. In this note some assumptions are removed and the bounds improved. Furthermore a technique is derived to reduce the total computationally cost significantly allowing to treat infinite dimensional matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Japan Journal of Industrial and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.