Abstract
Under suitable hypotheses on the function f, the two constrained minimization problems:are well known each to be dual to the other. This symmetric duality result is now extended to a class of nonsmooth problems, assuming some convexity hypotheses. The first problem is generalized to:in which T and S are convex cones, S* is the dual cone of S, and ∂y denotes the subdifferential with respect to y. The usual method of proof uses second derivatives, which are no longer available. Therefore a different method is used, where a nonsmooth problem is approximated by a sequence of smooth problems. This duality result confirms a conjecture by Chandra, which had previously been proved only in special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.