Abstract
The subject of this paper is networks of queues with an infinite number of servers at each node in the system. Our purpose is to point out that independent motions of customers in the system, which are characteristic of infinite-server networks, lead in a simple way to time-dependent distributions of state, and thence to steady-state distributions; moreover, these steady-state distributions often exhibit an invariance with regard to distributions of service in the network. We consider closed systems in which a fixed and finite number of customers circulate through the network and no external arrivals or departures are permitted, and open systems in which customers originate from an external source according to a Poisson process, possibly non-homogeneous, and each customer eventually leaves the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.