Abstract

We first present purely combinatorial proofs of two facts: the well-known fact that a monomial ordering must be a well ordering, and the fact (obtained earlier by Buchberger, but not widely known) that the division procedure in the ring of multivariate polynomials over a field terminates even if the division term is not the leading term, but is freely chosen. The latter is then used to introduce a previously unnoted, seemingly weaker, criterion for an ideal basis to be Grobner, and to suggest a new heuristic approach to Grobner basis computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.