Abstract

We present a simple technique to compute moments of derivatives of unitary characteristic polynomials. The first part of the technique relies on an idea of Bump and Gamburd: it uses orthonormality of Schur functions over unitary groups to compute matrix averages of characteristic polynomials. In order to consider derivatives of those polynomials, we here need the added strength of the Generalized Binomial Theorem of Okounkov and Olshanski. This result is very natural as it provides coefficients for the Taylor expansions of Schur functions, in terms of shifted Schur functions. The answer is finally given as a sum over partitions of functions of the contents. One can also obtain alternative expressions involving hypergeometric functions of matrix arguments. Nous introduisons une nouvelle technique, en deux parties, pour calculer les moments de dérivées de polynômes caractéristiques. La première étape repose sur une idée de Bump et Gamburd et utilise l'orthonormalité des fonctions de Schur sur les groupes unitaires pour calculer des moyennes de polynômes caractéristiques de matrices aléatoires. La deuxième étape, qui est nécessaire pour passer aux dérivées, utilise une généralisation du théorème binomial due à Okounkov et Olshanski. Ce théorème livre les coefficients des séries de Taylor pour les fonctions de Schur sous la forme de "shifted Schur functions''. La réponse finale est donnée sous forme de somme sur les partitions de fonctions des contenus. Nous obtenons aussi d'autres expressions en terme de fonctions hypergéométriques d'argument matriciel.

Highlights

  • We take for the characteristic polynomial of a N × N unitary matrix U N ZU (θ) := 1 − ei(θj −θ), (1)j=1 where the θjs are the eigenangles of U and set VU (θ) := eiN (θ+π)/2e−i N j=1 θj /2ZU (θ). (2)

  • J=1 where the θjs are the eigenangles of U and set eiN (θ+π)/2e−i

  • This, along with a discrete moment version due to Hughes, is the principal underlying motivation for the all the random matrix theory analysis that occurs in [HKO00, Hug01, Hug05, Mez03, CRS06, FW06]. Another application is tied to the work of Hall [Hal02a, Hal02b, Hal04, Hal08], where results on the objects studied here can be used to hint towards optimizations of rigorous arguments in number theory, and serve as inputs on theorems there

Read more

Summary

Introduction

The random matrix theory problem of evaluating (M) (2k, r) and |V| (2k, r) has applications in number theory (see [Deh08] for a more detailed exposition of these ideas). These values are related to the factor g(k, h) in the formula. This, along with a discrete moment version due to Hughes, is the principal underlying motivation for the all the random matrix theory analysis that occurs in [HKO00, Hug, Hug, Mez, CRS06, FW06] Another application is tied to the work of Hall [Hal02a, Hal02b, Hal, Hal08], where results on the objects studied here can be used to hint towards optimizations of rigorous arguments in number theory, and serve as (conjectural) inputs on theorems there.

Definitions
Shifted Schur Functions and Generalized Binomial Theorem
Proof of Theorem 2
Properties of the Rational Functions
Hypergeometric Functions of Matrix Arguments
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call