Abstract
Mascarenhas gave an instance of linear programming problems to show that the long-step affine scaling algorithm can fail to converge to an optimal solution with the step-size λ=0.999 . In this note, we give a simple and clear geometrical explanation for this phenomenon in terms of the Newton barrier flow induced by projecting the homogeneous affine scaling vector field conically onto a hyperplane where the objective function is constant. Based on this interpretation, we show that the algorithm can fail for "any" λ greater than about 0.91 (a more precise value is 0.91071), which is considerably shorter than λ = 0.95 and 0.99 recommended for efficient implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.