Abstract
Hodge integrals over moduli spaces of curves appear naturally during the localization procedure in computation of Gromov-Witten invariants. A remarkable formula of Marino-Vafa expresses a generation function of Hodge integrals via some combinatorial and algebraic data seemingly unrelated to these apriori algebraic geometric objects. We prove in this paper by directly expanding the formula and estimating the involved terms carefully that except a specific type all the other Hodge integrals involving up to three Hodge classes can be calculated from this formula. This implies that amazingly rich information about moduli spaces and Gromov-Witten invariants is encoded in this complicated formula. We also give some low genus examples which agree with the previous results in literature. Proofs and calculations are elementary as long as one accepts Mumford relations on the reductions of products of Hodge classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.