Abstract

Abstract A Kakeya set 𝓚 in an affine plane of order q is the point set covered by a set 𝓛 of q + 1 pairwise non-parallel lines. By Dover and Mellinger [6], Kakeya sets with size at least q 2 – 3q + 9 contain a large knot, i.e. a point of 𝓚 lying on many lines of 𝓛. We improve on this result by showing that Kakeya set of size at least ≈ q 2 – q + q contain a large knot, and we obtain a sharp result for planes containing a Baer subplane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.