Abstract

Whenever many-sorted theories are discussed in logic texts (e.g., [3, pp. 483–485]), it is fashionable to observe that every many-sorted theory can be effectively replaced by an equally powerful one-sorted theory *. The theory * contains for each sort σ of a unary predicate symbol Sσ used to indicate that an individual is of sort σ; the nonlogical axioms of * are the “translations” of those of together with axioms asserting that there is at least one individual of each sort and that all function symbols behave properly with respect to sorts. This observation suggests that perhaps many-sorted theories are no more useful than one-sorted theories. That this is not always the case has been pointed out previously [1, p. 13]. The content of this note is that can be interpretable in without * being interpretable in *.If a function symbol f in a many-sorted theory takes as its arguments n terms a1,…, an of sorts σ1, …, σn, respectively and produces a term fa1 … an of sort σ, then f is said to be of type (σ1, …, σn;σ). Likewise, a predicate symbol is of type (σ1, …, σn) if it takes as its arguments n terms of sorts σ1, …, σn. We assume that for each sort σ there is a predicate symbol = σ of type (σ, σ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.