Abstract
A group G is said to have the CF-property if the index |X:XG| is finite for every subgroup X of G. Extending previous results by Buckley, Lennox, Neumann, Smith, and Wiegold, it is proven here that if G is a locally graded group whose proper subgroups have the CF-property, then G is abelian-by-finite, provided that all its periodic sections are locally finite. Groups in which all proper subgroups of infinite rank have the CF-property are also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.