Abstract
This paper is devoted to the controlled drift estimation of the mixed fractional Ornstein-Uhlenbeck process. We will consider two models: one is the optimal input where we will find the controlled function which maximize the Fisher information for the unknown parameter and the other one with a constant as the controlled function. Large sample asymptotical properties of the Maximum Likelihood Estimator (MLE) is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from [ 12 ]. As a a supplement of [ 12 ] we will also prove that the MLE is strongly consistent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.