Abstract
The solution of the linear system Ax = b by iterative methods requires a splitting of the coefficient matrix in the form A = M − N where M is usually chosen to be a diagonal or a triangular matrix. In this article we study relaxation methods induced by the Hermitian and skew-Hermitian splittings for the solution of the linear system arising from a compact fourth order approximation to the one dimensional convection-diffusion equation and compare the convergence rates of these relaxation methods to that of the widely used successive overrelaxation (SOR) method. Optimal convergence parameters are derived for each method and numerical experiments are given to supplement the theoretical estimates. For certain values of the diffusion parameter, a relaxation method based on the Hermitian splitting converges faster than SOR. For two-dimensional problems a block form of the iterative algorithm is presented. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 581–591, 1998
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.