Abstract

Any Hausdorff space X is a dense subspace of an H-closed space κX, called the Katětov extension of X, with the property that any H-closed extension Y of X is a continuous image of κX under a mapping which leaves X pointwise fixed [8], [10]. In [8], Liu has shown that the extensions κ(X×Y) and κX×κY of X × Y are equal iff (1) X or Y is finite, or (2) X and Y are H-closed. In this note, we examine whether homeomorphism of these two extensions implies equality. We give a condition under which homeomorphism implies equality and an example to show that this relation does not hold in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.