Abstract
The purpose of this paper is to introduce and study a function space A_(α,w)^(B,Y) (R^d ) to be a linear space of functions h∈L_w^1 (R^d ) whose fractional Fourier transforms F_α h belong to the Wiener-type space W(B,Y)(R^d ), where w is a Beurling weight function on R^d. We show that this space becomes a Banach algebra with the sum norm 〖‖h‖〗_(1,w)+〖‖F_α h‖〗_(W(B,Y)) and Θ convolution operation under some conditions. We find an approximate identity in this space and show that this space is an abstract Segal algebra with respect to L_w^1 (R^d ) under some conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.