Abstract
The paper deals with generalized confidence intervals for the between-group variance in one-way heteroscedastic (unbalanced) ANOVA with random effects. The approach used mimics the standard one applied in mixed linear models with two variance components, where interval estimators are based on a minimal sufficient statistic derived after an initial reduction by the principle of invariance. A minimal sufficient statistic under heteroscedasticity is found to resemble its homoscedastic counterpart and further analogies between heteroscedastic and homoscedastic cases lead us to two classes of fiducial generalized pivots for the between-group variance. The procedures suggested formerly by Wimmer and Witkovský [Between group variance component interval estimation for the unbalanced heteroscedastic one-way random effects model, J. Stat. Comput. Simul. 73 (2003), pp. 333–346] and Li [Comparison of confidence intervals on between group variance in unbalanced heteroscedastic one-way random models, Comm. Statist. Simulation Comput. 36 (2007), pp. 381–390] are found to belong to these two classes. We comment briefly on some of their properties that were not mentioned in the original papers. In addition, properties of another particular generalized pivot are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.