Abstract

Pairwise likelihood functions are convenient surrogates for the ordinary likelihood, useful when the latter is too difficult or even impractical to compute. One drawback of pairwise likelihood inference is that, for a multidimensional parameter of interest, the pairwise likelihood analogue of the likelihood ratio statistic does not have the standard chi-square asymptotic distribution. Invoking the theory of unbiased estimating functions, this paper proposes and discusses a computationally and theoretically attractive approach based on the derivation of empirical likelihood functions from the pairwise scores. This approach produces alternatives to the pairwise likelihood ratio statistic, which allow reference to the usual asymptotic chi-square distribution and which are useful when the elements of the Godambe information are troublesome to evaluate or in the presence of large data sets with relative small sample sizes. Two Monte Carlo studies are performed in order to assess the finite-sample performance of the proposed empirical pairwise likelihoods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.