Abstract

AbstractWe point out some connections between existence of homogenous sets for certain edge colorings and existence of branches in certain trees. As a consequence, we get that any locally additive coloring (a notion introduced in the paper) of a cardinal κ has a homogeneous set of size κ provided that the number of colors μ satisfies . Another result is that an uncountable cardinal κ is weakly compact if and only if κ is regular, has the tree property, and for each there exists such that every tree of height μ with λ nodes has less than branches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.