Abstract

We address the issue of the proximity of interacting diffusion models on large graphs with a uniform degree property and a corresponding mean field model, i.e. a model on the complete graph with a suitably renormalized interaction parameter. Examples include Erd\H{o}s-R\'enyi graphs with edge probability $p_n$, $n$ is the number of vertices, such that $\lim_{n \to \infty}p_n n= \infty$. The purpose of this note it twofold: (1) to establish this proximity on finite time horizon, by exploiting the fact that both systems are accurately described by a Fokker-Planck PDE (or, equivalently, by a nonlinear diffusion process) in the $n=\infty$ limit; (2) to remark that in reality this result is unsatisfactory when it comes to applying it to systems with $N$ large but finite, for example the values of $N$ that can be reached in simulations or that correspond to the typical number of interacting units in a biological system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.