Abstract

Self-affinity versus decoupling: this dichotomy represents a breakthrough with respect to the previous literature, that has grown under the dogma of self-affinity. The word decoupling refers to those correlation functions allowing to treat independently the Hausdorff–Besicovitch dimension and Hurst effect parameters. The former is a roughness measure associated to profiles or surfaces. The latter reflects possible persistent or antipersistent behaviours of the associated random process or random field. Thus, the decoupling philosophy opens new avenues for the analysis and interpretation of local and global properties of random fields. In this paper, we introduce a new class of isotropic correlation functions, called Dagum, show its permissibility on any n -dimensional space, and analyse its attitudes with respect to decoupling. Interesting aspects arise from an intensive simulation study, conducted in one and two dimensions. In particular, it seems that the decoupling attitude may depend on the space dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.