Abstract
An odd hole is an induced odd cycle of length at least 5. Scott and Seymour confirmed a conjecture of Gyárfás and proved that if a graph $G$ has no odd holes then $\chi(G)\le 2^{2^{\omega(G)+2}}$. Chudnovsky, Robertson, Seymour and Thomas showed that if $G$ has neither $K_4$ nor odd holes then $\chi(G)\le 4$. In this note, we show that if a graph $G$ has neither triangles nor quadrilaterals, and has no odd holes of length at least 7, then $\chi(G)\le 4$ and $\chi(G)\le 3$ if $G$ has radius at most $3$, and for each vertex $u$ of $G$, the set of vertices of the same distance to $u$ induces a bipartite subgraph. This answers some questions in Plummer and Zha (2014).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Electronic Journal of Combinatorics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.