Abstract
In an influential 2008 paper, Baker proposed a number of conjectures relating the Brill–Noether theory of algebraic curves with a divisor theory on finite graphs. In this note, we examine Baker’s Brill–Noether existence conjecture for special divisors. For g≤5 and ρ(g,r,d) nonnegative, every graph of genus g is shown to admit a divisor of rank r and degree at most d. As further evidence, the conjecture is shown to hold in rank 1 for a number families of highly connected combinatorial types of graphs. In the relevant genera, our arguments give the first combinatorial proof of the Brill–Noether existence theorem for metric graphs, giving a partial answer to a related question of Baker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.