Abstract
We regard the work of Maulik and Toda, proposing a sheaf-theoretic approach to Gopakumar-Vafa invariants, as defining a BPS structure, that is, a collection of BPS invariants together with a central charge. Assuming their conjectures, we show that a canonical flat section of the flat connection corresponding to this BPS structure, at the level of formal power series, reproduces the Gromov-Witten partition function for all genera, up to some error terms in genus 0 and 1. This generalises a result of Bridgeland and Iwaki for the contribution from genus 0 Gopakumar-Vafa invariants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.