Abstract

Hall et al. (1999) proposed block-thresholding methods to estimate mean regression functions with independent random errors. They showed that block-thresholded wavelet estimators attain minimax-optimal convergence rates when the mean functions belong to a large class of functions that involve a wide variety of irregularities, including chirp and Doppler functions, and functions with jump discontinuities. In this article, we show that block-thresholded wavelet estimators still attain minimax convergence rates when the mean functions belong to a wide range of Besov classes (where s > 1/p, p ≥ 1 and q ≥ 1) with long-memory Gaussian errors. Therefore, in the presence of long-memory Gaussian errors, wavelet estimators still provide extensive adaptivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.