Abstract
Subspace recycling iterative methods and other subspace augmentation schemes are a successful extension to Krylov subspace methods in which a Krylov subspace is augmented with a fixed subspace spanned by vectors deemed to be helpful in accelerating convergence or conveying knowledge of the solution. Recently, a survey was published, in which a framework describing the vast majority of such methods was proposed [Soodhalter et al., GAMM-Mitt., 43 (2020), Art. e202000016]. In many of these methods, the Krylov subspace is one generated by the system matrix composed with a projector that depends on the augmentation space. However, it is not a requirement that a projected Krylov subspace be used. There are augmentation methods built on using Krylov subspaces generated by the original system matrix, and these methods also fit into the general framework. In this note, we observe that one gains implementation benefits by considering such augmentation methods with unprojected Krylov subspaces in the general framework. We demonstrate this by applying the idea to the R3GMRES method proposed in [Dong et al., Electron., Trans., Numer., Anal., 42 (2014), pp. 136â146] to obtain a simplified implementation and to connect that algorithm to early augmentation schemes based on flexible preconditioning [Saad, SIAM J. Matrix Anal. Appl., 18 (1997)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ETNA - Electronic Transactions on Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.