Abstract

In the context of cooperative games with transferable utility Hamiache (Int J Game Theory 30:279–289, 2001) utilized continuity, the inessential game property and associated consistency to axiomatize the well-known Shapley value (Ann Math Stud 28:307–317, 1953). The question then arises: “Do there exist linear, symmetric values other than the Shapley value that satisfy associated consistency?”. In this Note we give an affirmative answer to this question by showing that a linear, symmetric value satisfies associated consistency if and only if it is a linear combination of the Shapley value and the equal-division solution. In addition, we offer an explicit formula for generating all such solutions and show how the structure of the null space of the Shapley value contributes to its unique position in Hamiache’s result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.