Abstract
In the framework of the Engle-type (G)ARCH models, I demonstrate that there is a family of symmetric and asymmetric density functions for which the asymptotic efficiency of the semiparametric estimator is equal to the asymptotic efficiency of the maximum likelihood estimator. This family of densities is bimodal (except for the normal). I also chracterize the solution to the problem of minimizing the mean squared distance between the parametric score and the semiparametric score in order to search for unimodal densities for which the semiparametric estimator is likely to perform well. The LaPlace density function emerges as one of these cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.