Abstract

We continue the study of Token Sliding (reconfiguration) graphs of independent sets initiated by the authors in an earlier paper [Graphs Comb. 39.3, 59, 2023]. Two of the topics in that paper were to study which graphs \(G\) are Token Sliding graphs and which properties of a graph are inherited by a Token Sliding graph. In this paper, we continue this study specializing in the case of when \(G\) and/or its Token Sliding graph \(\mathsf{TS}_k(G)\) is a tree or forest, where \(k\) is the size of the independent sets considered. We consider two problems. The first is to find necessary and sufficient conditions on \(G\) for \(\mathsf{TS}_k(G)\) to be a forest. The second is to find necessary and sufficient conditions for a tree or forest to be a Token Sliding graph. For the first problem, we give a forbidden subgraph characterization for the cases of \(k=2,3\). For the second problem, we show that for every \(k\)-ary tree \(T\) there is a graph \(G\) for which \(\mathsf{TS}_{k+1}(G)\) is isomorphic to \(T\). A number of other results are given along with a join operation that aids in the construction of \(\mathsf{TS}_k\)-graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.