Abstract

This paper considers positive recurrent Markov chains where the probability of remaining in the current state is arbitrarily close to 1. Specifically, conditions are given which ensure the non-existence of central limit theorems for ergodic averages of functionals of the chain. The results are motivated by applications for Metropolis–Hastings algorithms which are constructed in terms of a rejection probability (where a rejection involves remaining at the current state). Two examples for commonly used algorithms are given, for the independence sampler and the Metropolis-adjusted Langevin algorithm. The examples are rather specialized, although, in both cases, the problems which arise are typical of problems commonly occurring for the particular algorithm being used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.