Abstract

Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses ‘Probability-Proportional-to-Size’ random sampling with weights formed from the copula likelihood function. The method is flexible and can be applied to parametric and nonparametric marginal density estimates. The precision of the simulation can be calibrated by adjusting the density of the multidimensional grid used in the simulation process. The approach is fully transparent to any copula function with continuous random variables. An example evaluates a number of goodness-of-fit criteria and provides strong support for the validity and practicality of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.