Abstract

R. Kemp has shown that the average height of r-tuply rooted planted plane trees is $$\sqrt {\pi n} - \frac{1}{2}(r - 2) + O(\log (n)n^{1/2 - \varepsilon } ), \varepsilon > 0, n \to \infty ,$$ assuming that all such trees withn nodes are equally likely. We give a quite short proof of this result (with an error term ofO (1)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.