Abstract

This note is a discussion of H. A. Simon's model (1955) concerning the class of frequency distributions generally associated with the name of G. K. Zipf. The main purpose is to show that Simon's model is analytically circular in the case of the linguistic laws of Estoup-Zipf and Willis-Yule. Insofar as the economic law of Pareto is concerned, Simon has himself noted that his model is a particular case of that of Champernowne; this is correct, with some reservation. A simplified version of Simon's model is included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.