Abstract

A mixture experiment involves combining two or more components in various proportions and collecting data on one or more responses. A linear mixture model may adequately represent the relationship between a response and mixture component proportions and be useful in screening the mixture components. The Scheffé and Cox parameterizations of the linear mixture model are commonly used for analyzing mixture experiment data. With the Scheffé parameterization, the fitted coefficient for a component is the predicted response at that pure component (i.e. single-component mixture). With the Cox parameterization, the fitted coefficient for a mixture component is the predicted difference in response at that pure component and at a pre-specified reference composition. This article presents a new component-slope parameterization, in which the fitted coefficient for a mixture component is the predicted slope of the linear response surface along the direction determined by that pure component and at a pre-specified reference composition. The component-slope, Scheffé, and Cox parameterizations of the linear mixture model are compared and their advantages and disadvantages are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.