Abstract
Maxwellian-type rheological models of inelastic effects of creep type at large strains are revisited in relation to inelastic strain gradient theories. In particular, we observe that a dependence of the stored energy density on inelastic strain gradients may lead to spurious hardening effects, preventing the model from accommodating large inelastic slips. The main result of this paper is an alternative inelastic model of creep type, where a higher-order energy contribution is provided by the gradients of the elastic strain and of the plastic strain rate, thus preventing the onset of spurious hardening under large slips. The combination of Kelvin–Voigt damping and Maxwellian creep results in a Jeffreys-type rheological model. The existence of weak solutions is proved by way of a Faedo–Galerkin approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.