Abstract
Al Bastami, Belić, and Petrović (2010) proposed a new method to find solutions to some Riccati differential equations. Initially, they obtain a second-order linear ordinary differential equation (ODE) through a standard variable change in the Riccati equation. They then propose a new variable change and discuss the resolution of the resulting ODE in two cases. In the first one, the resulting ODE has constant coefficients. In the second case, they claim that it is possible to arbitrarily choose one of the resulting ODE coefficients and solve particular Riccati ODEs. We show in this work that all Riccati equations that belong to the first case can also be solved by Chini’s method. Furthermore, we show that any Riccati equation fits the second case and that the choice of the resulting ODE coefficients is not free.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Innovation Education and Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.